科学家成功合成铹的第14个同位素******
超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。
超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。
近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。
此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。
不断进行探索,再次合成铹同位素
铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。
质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。
103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。
截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。
目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。
通过熔合反应,形成新的原子核
铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。
“仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。
在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。
“如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。
超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。
拓展新的领域,推动超重核理论研究
由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。
此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。
研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。
“此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌)
访谈|ASML全球高级副总裁沈波:开放合作半导体行业才能发展******
(第五届进博会)访谈|ASML全球高级副总裁沈波:开放合作半导体行业才能发展
中新社上海11月6日电 题:访谈|ASML全球高级副总裁沈波:开放合作半导体行业才能发展
中新社记者 李佳佳
元宇宙体验、光刻机“开箱”视频和H5虚拟课堂,备受外界关注的全球半导体行业供应商ASML在第五届中国国际进口博览会上,首次通过“元宇宙”平台,带来沉浸式的光刻体验,彰显前沿科技。
自1988年交付首台步进式光刻机以来,ASML进入中国市场已有三十余年,见证、亲历和支持了中国半导体产业的发展。
“今年是ASML第四次参展进博会,我们希望借助进博会的平台不断地展现开放共赢、合作发展的理念。”ASML全球高级副总裁、中国区总裁沈波表示:“ASML一直秉持开放与专注,以‘开放式创新’和对光刻技术的专注,持续支持半导体行业的发展。在进博会,我们可以与全行业甚至跨行业的企业和合作伙伴加深交流,共商合作前景。”
首次在进博会亮相的“ASML元宇宙”之旅给此间观展者带去了身临其境的独特体验。在ASML元宇宙空间里,观展者可以“亲身”进入无尘室,近距离接触神秘的光刻机,更可以结合影视级效果的3D裸眼视频,了解光刻机的内部基本原理——光源经过照明模组投向掩模版,再穿过掩模版上的电路图案,通过投影物镜将影像聚焦到晶圆上。“元宇宙”中还有生动的全方位光刻解决方案动画和丰富多样的科普视频,令观展者沉浸式了解更多有关ASML的故事。
“每年我们都会思考以什么样的形式参加进博会”,沈波说,去年,进博会的集成电路专区设立,凸显了外界对产业的关注和重视。希望未来在设立专区的基础上,能够增加宣传和引导,比如举办一些专题或者小论坛,以加深外界对行业的了解。
其实,除了光刻机,ASML在芯片制造的成像环节也会提供全方位的光刻解决方案,从光刻机设备本身到计算光刻软件,再到芯片生产过程的量测、缺陷的检查等,ASML均有涉猎。“我们更想跟大家讲讲怎么帮助客户在芯片生产的过程中,在我们的环节上做出足够大的工艺窗口,让芯片生产的质量、精度能够控制得更好,或者让客户的技术进步更顺畅地向前。这是我们今年进博会主要的出发点。”
当前,中国已是全世界最大的成熟制程市场,这俨然成为行业的共识。“中国在整个半导体产业链中扮演非常重要的角色,这是所谓‘不确定性中的确定性’。在这种确定的情况下,中国该怎么发展成熟制程,怎么把成熟制程做好,怎么在全球的半导体产业链里把自己重要的角色扮演好,从这个角度看,中国市场的潜力是很大的,中国有全世界最大的终端市场,最活跃的应用市场,终端市场、应用市场反过来可以推动上游设计、制造方面的发展创新。”
说起行业未来的发展,沈波坦言,半导体行业自身有一定的周期,有起有伏不是新鲜事。但是从半导体行业过去多年的发展和对未来的预期来看,整体向上的趋势是在的,“只要大趋势在,就会要求有更多的计算、更多的存储、更多新的应用支持,就会带动半导体行业的需求量向上”。(完)